Maintained with ☕️ by
IcePanel logo

AWS Glue now supports serverless streaming ETL



[AWS Glue](/glue/) now supports streaming ETL. This feature makes it easy to set up continuous ingestion pipelines that prepare streaming data on the fly and make it available for analysis in seconds. Streaming ETL jobs in AWS Glue can consume data from streaming sources likes Amazon Kinesis and Apache Kafka, clean and transform those data streams in-flight, and continuously load the results into Amazon S3 data lakes, data warehouses, or other data stores. Customers can use this feature to process event data like IoT event streams, clickstreams, and network logs. Streaming ETL jobs in AWS Glue run on the Apache Spark Structured Streaming engine, so customers can use them to enrich, aggregate, and combine streaming data, as well as to run a variety of complex analytics and machine learning operations. Previously, you had to manually construct and stitch together stream handling and monitoring systems to build streaming data ingestion pipelines. Streaming ETL jobs in AWS Glue leverage AWS Glue’s serverless infrastructure to simplify resource management, optimize cost, and enable you to set up continuous ingestion pipelines without writing code - reducing average implementation time from months to days. This feature is now available in the same [AWS regions](/about-aws/global-infrastructure/regional-product-services/) as AWS Glue. To learn more about this feature, visit our [documentation](